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Abstract: A new class of exact solutions of the

system of Einstein field equations is found in a series

form for an anisotropic matter. This is achieved by

choosing a generalized form for one of the

gravitational potentials and a particular form for the

anisotropic factor. The solution of the Einstein field

equations is reduced to a recurrence relation with

variable rational coefficients which can be solved in

general using mathematical induction. It is possible to

write the new series solutions in terms of special

functions. I regain well known physically reasonable

model for isotropic matter.   

Keywords: Einstein field equations, exact solutions,

anisotropic matter

Introduction

In recent years a number of authors have studied

exact solutions to the Einstein field equations

corresponding to the anisotropic matter where the

radial component of the pressure differs from the

angular component. The gravitational filed is taken to

be spherically symmetric and static since these

solutions may be applied to relativistic stars. A number

of researchers have examined how anisotropic matter

affects critical mass, critical surface redshift and

stability of highly compact bodies. These investigations

are contained in the papers (Dev and Gleiser, 2003),

(Mak and Harko, 2003), among others.  Some

researchers have suggested that anisotropy may be

important in understanding the gravitational behavior

of   boson stars and the role of strange matter with

densities higher than neutron stars. Mark and Harko

(Mak and. Harko, 2002) and Sharma and Mukherjee

(Sharma and Mukherjee, 2002) suggest that anisotropy

is crucial ingredient in the description of dense stars

with strange matter. 

Most solutions of the Einstein field equations

with anisotropic matter have been obtained in an ad

hoc approach. Mainly two distinct procedures have

been adopted to solve these equations for spherically

symmetric static manifolds. Firstly, the coupled

differential equations are solved by computations after

choosing an equation of state.  Secondly, the exact

Einstein solutions can be obtained by specifying the

geometry.  I follow the later technique in an attempt to

find solutions in terms of special functions that are

suitable for description of relativistic stars. This

approach was recently used by Chaisi and Maharaj

(Chaisi. and  .Maharaj, 2005) that yield a solution in

terms of elementary functions. This solution have

considered by many authors in the analysis of

gravitational behavior of compact objects, and the

study of anisotropy under strong gravitational fields.

Hence the approach followed in this paper has proved

to be a fruitful avenue for generating new exact

solution for describing the interior spacetimes of

relativistic spheres.       

My intension in this paper is twofold.  Firstly, I

seek to model a relativistic sphere with anisotropic

matter which is physically acceptable. I require that the

gravitational fields and matter variables are finite,

continuous and well behaved in the stellar interior and

the solution is stable with respect to radial

perturbations. Secondly, I seek to regain an isotropic

solution of Einstein field equations which satisfy the

relevant physical criteria when the anisotropy factor

vanishes. This ideal is not easy to achieve in practice

and only a few examples with the required two features

have been found thus far.  The main objective of this

paper is to provide systematically a solution to Einstein

equations with anisotropic matter whish satisfy the

above two conditions similar to the recent treatment

of Komathiraj and Maharaj (Komathiraj and. Maharaj,

2010).  In Section 2, the Einstein field equations for the
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static spherically symmetric line element with

anisotropic matter is expressed as an equivalent set of

differential equations utilizing a transformation from

(Durgapal and  Bannerji, 1983). I chose particular

forms for one of the gravitational potentials and the

anisotropic factor, which enables me to obtain the

condition of pressure anisotropy in the remaining

gravitational potential in Section 3. This is the master

equation which determines the solvability of the entire

system.  I assume a solution in a series form which

yields recurrence relation, which I mange to solve from

first principle. It is then possible to exhibit exact

solutions to the Einstein field equations. I show that it

is possible to express the general solutions in terms of

special functions in Section 4. I regain an isotropic

solution found previously by Finch and Skea (Finch

and Skea, 1989).

Field equations

On physical grounds it is necessary for the

gravitational field to be static and spherically

symmetric. Consequently, I assume that the

gravitational field of the stellar interior is represented

by the line element

In Schwarzschild coordinates,                        where

f(r) and  g(r) are arbitrary functions. I consider the

general case of a matter distribution with anisotropy.

Therefore it is assumed that the energy momentum

tensor for the interior to be an anisotropic imperfect

fluid; this is represented by the form

In equation [2], the quantity μ is the energy density, Pr

is the radial pressure and Pt is the tangential pressure.

These physical quantities are measured relative to the

commoving fluid velocity. The line element [1] and the

imperfect matter distribution [2] generate the Einstein

field equations; the field equations can be written in the

form

where primes denote differentiation with respect to r.

The Einstein field equations [3] – [5] describe the

gravitational behaviour for an anisotropic imperfect

fluid. For matter distributions with Pr = Pt

(isotropic pressures), the Einstein’s equations for a

perfect fluid may be regained from [3] – [5]. It is

convenient at this point to introduce a new

independent variable x and two new functions y and

Z. These are given by

In equation [6], A and C are arbitrary constants. The

transformation (6) was recently used by Maharaj and

Komathiraj (Maharaj and  Komathiraj  2007) and John

and Maharaj (John and  Maharaj, 2006) to describe

neutron stars. The transformation [6] simplifies the

field equations and the system [3] – [5] can be written

as

where dots denote differentiations with respect to x.

The quantity Δ is defined as the measure of anisotropy

or anisotropy factor. The Einstein field equations as

expressed in [7] – [10] is a system of four nonlinear

equations in terms of six unknown

variables (μ, Pr,  Pt,  Z, y, Δ). The system [7] – [10] is

under-determined so that there are different ways in

,             ,                     

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 

                          

 



K. Komathiraj 
Exact anisotropic solutions of Einstein field equations  

which I can proceed with the integration process. Here

I show that it is possible to specify two of the quantities

and generate an ordinary differential equation in only

one dependent variable in the integration process. This

helps to produce a particular exact model.

Master equation

In this work, I choose physically reasonable forms for

the gravitational potential Z and the measure of

anisotropy Δ. Then the other gravitational potential y

can be found by solving [9] which is the second order

and linear in y.  The remaining unknowns are then

obtained from the rest of the system. I make the

specific choices

In equation (11), α is a real constant. The potential Z

in (11) is regular at the origin and continuous in the

stellar interior and the form for Δ vanishes at the

centre of the star and remains continuous and

bounded in the interior of the star for a wide range of

values of the parameter α. Therefore the forms chosen

in [11] are physically acceptable. These specific choices

for Z and Δ simplify the integration process.

Substitution of [11] into [9] leads to the equation

This has the advantage of being a second order linear

differential equation in the gravitational potential y.

The differential equation [12] is the master equation of

the system [7] – [10] and has to be solved to find exact

model for an anisotropic sphere. Two categories of

solutions are possible when  α = 1 and α ≠ 1.

Case I:  α = 1

In this case the differential equation [12] is separable

and it can be immediately integrated to obtain the

solution

where c1 and c2 are two arbitrary constants.

Case II: α ≠ 1

With α ≠ 1 the master equation [12] is difficult to solve.

However it can be transformed to a different type of

differential equation which can be solved using the

method of Frobenius.  It is convenient to introduce the

new variable X = 1 + x in [12] to yield

where Y = Y(X) is a function of the new variable X. As

the point X = 0 is a regular singular point of [13], there

exist two linearly independent solutions of the form of

a power series with centre X = 0.  These solutions can

be generated using the method of Frobenius. Therefore

I can assume 

In equation [14] ai are the coefficients of the series and

b is a constant. For a legitimate solution the coefficients

ai and the parameter b should be determined

explicitly. On substituting [14] into [13], I obtain

The coefficients of the various powers of X must

vanish. Equating the coefficient of Xb-1 to zero I obtain

2a0 b(2b - 3) = 0. Since,  a0 ≠ 0, b = 0 or b = 3/2.

Equating the coefficient of  X b+i to zero, I obtain

which is the recurrence formula, or difference

equation, governing the structure of the solution. It is

possible to express the general coefficient  ai in terms

of the leading coefficient a0 by establishing a general

structure for the coefficient by considering the leading

terms. These coefficients generate the pattern
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It is easy to establish that the result (15) holds for all

positive integers p using the principle of mathematical

induction. 

Now it is possible to generate two linearly independent

solutions to (13) with the assistance of (14) and (15).

For the parameter value b=0, the first solution is given

by 

For the parameter value b = 3/2, , the second solution

has the form

Thus the general solution to the differential equation

[13], for the choice in [11], is given as  

where d1 and d2 are constants. In terms of the original

variable x, the function Y given above becomes 

where .  A = d1a0,  B = d2a0. Thus I have found the

general series solution to differential equation [13].

Solution [16] is expressed in terms of a series with real

arguments unlike the complex arguments given by

software packages.  

Solution in terms of special
functions

The general solution [16] is given in the form of a

series which define special functions. It is possible for

the general solution to be written in terms of special

functions in closed form which is a more desirable

form for the physical description of a relativistic star.

It is possible after some manipulation to write [16] in

the form  

It is interesting to observe that the equation [17] can

be expressed in terms of trigonometric functions. Then

it is easy to show that [17] can be written in the form

where I have set

Setting α = 0 (anisotropic factor Δ = p
t
_ p

r
= 0), then

[18] becomes 

The exact isotropic solution [19] is same as the model

of Finch and Skea (Finch & Skea, 1989). This model

satisfies all the physical conditions for an isolated

spherically symmetric stellar source and consequently

has been utilized by many researchers to model for

neutron stars.   

Discussion

I make some brief comments relating to the physical

properties of the solutions found in this paper. In this

work I have found a new solution [16] in the form of

series and a closed form solution [18] to the Einstein

field equations for an anisotropic matter distribution

utilizing the method of Frobenius. The particular

forms for one of the gravitational potential and the

anisotropic factor were assumed. The assumed choices

for the gravitational potential and the anisotropic

factor in [11] are clearly positive and well behaved

                                

                                

                                   

    

 

                                   

 

                                



throughout the interior of the sphere for a wide range

of the parameter values α. The general solution [16]

and the special solution [17] are well defined functions

on the interval [0, d] where d=CR2 and R is the stellar

radius. The anisotropic factor may vanish in the

solution [18] and I can regain the isotropic solution

[19]. Thus my approach has the advantage of

necessarily containing an isotropic neutral stellar

solution found previously. 
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